Integrating WordNet and FrameNet using a Knowledge-based Word Sense Disambiguation Algorithm
نویسندگان
چکیده
This paper presents a novel automatic approach to partially integrate FrameNet and WordNet. In that way we expect to extend FrameNet coverage, to enrich WordNet with frame semantic information and possibly to extend FrameNet to languages other than English. The method uses a knowledge-based Word Sense Disambiguation algorithm for linking FrameNet lexical units to WordNet synsets. Specifically, we exploit a graph-based Word Sense Disambiguation algorithm that uses a large-scale knowledge-base derived from WordNet. We have developed and tested four additional versions of this algorithm showing a substantial improvement over previous results.
منابع مشابه
Exploring the Integration of WordNet and FrameNet
This paper presents a novel automatic approach to partially integrate FrameNet and WordNet. In that way we expect to extend FrameNet coverage, to enrich WordNet with frame semantic information and possibly to extend FrameNet to languages other than English. The method uses a knowledge-based Word Sense Disambiguation algorithm for matching the FrameNet lexical units to WordNet synsets. Specifica...
متن کاملeXtended WordFrameNet
This paper presents a novel automatic approach to partially integrate FrameNet and WordNet. In that way we expect to extend FrameNet coverage, to enrich WordNet with frame semantic information and possibly to extend FrameNet to languages other than English. The method uses a knowledge-based Word Sense Disambiguation algorithm for matching the FrameNet lexical units to WordNet synsets. Specifica...
متن کاملGenerating Training Data for Semantic Role Labeling based on Label Transfer from Linked Lexical Resources
We present a new approach for generating role-labeled training data using Linked Lexical Resources, i.e., integrated lexical resources that combine several resources (e.g., WordNet, FrameNet, Wiktionary) by linking them on the sense or on the role level. Unlike resource-based supervision in relation extraction, we focus on complex linguistic annotations, more specifically FrameNet senses and ro...
متن کاملIntegrating Multiple Knowledge Sources to Disambiguate Word Sense: An Exemplar-Based Approach
In this paper, we present a new approach for word sense disambiguation (WSD) using an exemplar-based learning algorithm. This approach integrates a diverse set of knowledge sources to disambiguate word sense, including part of speech of neighboring words, morphological form, the unordered set of surrounding words, local collocations, and verb-object syntactic relation. We tested our WSD program...
متن کاملWord Frame Disambiguation: Evaluating Linguistic Linked Data on Frame Detection
The usefulness of FrameNet is affected by its limited coverage and non-standard semantics. This paper presents some strategies based on Linguistic Linked Open Data to fully exploit and broaden its coverage. These strategies lead to the creation of a novel resource, Framester, which serves as a hub between FrameNet, WordNet, VerbNet, BabelNet, DBpedia, Yago, DOLCE-Zero, as well as other resource...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009